predict
Single model prediction logic.
kelp.nn.inference.predict.PredictConfig
Bases: ConfigBase
The prediction config
Source code in kelp/nn/inference/predict.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
kelp.nn.inference.predict.build_prediction_arg_parser
Builds a base prediction argument parser.
Returns: An instance of :argparse.ArgumentParser.
Source code in kelp/nn/inference/predict.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
kelp.nn.inference.predict.main
Main entry point for performing model prediction. Will automatically use SAHI if model was trained with this flag.
Source code in kelp/nn/inference/predict.py
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
kelp.nn.inference.predict.parse_args
Parse command line arguments.
Returns: An instance of PredictConfig.
Source code in kelp/nn/inference/predict.py
145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
kelp.nn.inference.predict.predict
Runs prediction using specified datamodule and model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dm |
LightningDataModule
|
The datamodule to use for prediction. |
required |
model |
LightningModule
|
The model. |
required |
train_cfg |
TrainConfig
|
The original training configuration. |
required |
output_dir |
Path
|
The output directory. |
required |
resize_tf |
Callable[[Tensor], Tensor]
|
The resize transform for post-prediction adjustment. |
required |
Source code in kelp/nn/inference/predict.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
kelp.nn.inference.predict.resolve_post_predict_resize_transform
Resolves the post-predict resize transform.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
resize_strategy |
Literal['resize', 'pad']
|
The resize strategy. |
required |
source_image_size |
int
|
The source image size. |
required |
target_image_size |
int
|
The target image size. |
required |
Source code in kelp/nn/inference/predict.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
kelp.nn.inference.predict.run_prediction
Runs the prediction logic for a single model checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_dir |
Path
|
The path to the data directory. |
required |
output_dir |
Path
|
The path to the output directory. |
required |
model_checkpoint |
Path
|
The model checkpoint. |
required |
use_mlflow |
bool
|
A flag indicating whether to use MLflow to load the model. |
required |
train_cfg |
TrainConfig
|
The original training config used to train the model. |
required |
tta |
bool
|
A flag indicating whether to use TTA for prediction. |
False
|
soft_labels |
bool
|
A flag indicating whether to use soft labels for prediction. |
False
|
tta_merge_mode |
str
|
The TTA merge mode. |
'max'
|
decision_threshold |
Optional[float]
|
An optional decision threshold for prediction. torch.argmax will be used by default. |
None
|
Source code in kelp/nn/inference/predict.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
kelp.nn.inference.predict.run_sahi_prediction
Runs SAHI (Sliced Aided Hyper Inference) using specified model checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_dir |
Path
|
The path to the data directory. |
required |
output_dir |
Path
|
The path to the output directory. |
required |
model_checkpoint |
Path
|
The model checkpoint. |
required |
use_mlflow |
bool
|
A flag indicating whether to use MLflow to load the model. |
required |
train_cfg |
TrainConfig
|
The original training config used to train the model. |
required |
tta |
bool
|
A flag indicating whether to use TTA for prediction. |
False
|
soft_labels |
bool
|
A flag indicating whether to use soft labels for prediction. |
False
|
tta_merge_mode |
str
|
The TTA merge mode. |
'max'
|
decision_threshold |
Optional[float]
|
An optional decision threshold for prediction. torch.argmax will be used by default. |
None
|
sahi_tile_size |
int
|
The size of the tiles to use when performing SAHI. |
128
|
sahi_overlap |
int
|
The size of the overlap between tiles to use when performing SAHI |
64
|
Source code in kelp/nn/inference/predict.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
|