sahi
SAHI inference logic.
kelp.nn.inference.sahi.inference_model
Runs inference on a batch of image tiles.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor
|
The batch of image tiles. |
required |
model |
Module
|
The model to use for inference. |
required |
soft_labels |
bool
|
A flag indicating whether to use soft-labels. |
False
|
tta |
bool
|
A flag indicating whether to use TTA. |
False
|
tta_merge_mode |
str
|
The TTA merge mode. |
'mean'
|
decision_threshold |
Optional[float]
|
An optional decision threshold to use. Will use torch.argmax by default. |
None
|
Source code in kelp/nn/inference/sahi.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
kelp.nn.inference.sahi.load_image
Helper function to load a satellite image and fill out missing pixels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_path |
Path
|
The path to the image. |
required |
band_order |
List[int]
|
The band order to load. |
required |
fill_value |
nan
|
The fill value for missing pixels. |
required |
Source code in kelp/nn/inference/sahi.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
kelp.nn.inference.sahi.merge_predictions
Merges the prediction tiles into a single image by averaging the predictions in the overlapping sections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tiles |
List[ndarray]
|
A list of tiles to merge back into one image. |
required |
original_shape |
Tuple[int, int, int]
|
The shape of the original image. |
required |
tile_size |
Tuple[int, int]
|
The tile size used to generate crops. |
required |
overlap |
int
|
The overlap between the tiles. |
required |
decision_threshold |
Optional[float]
|
An optional decision threshold. |
None
|
Source code in kelp/nn/inference/sahi.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
kelp.nn.inference.sahi.predict_sahi
Runs SAHI on specified image list.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
The model to use for prediction. |
required |
file_paths |
List[Path]
|
The input image paths. |
required |
output_dir |
Path
|
The path to the output directory. |
required |
tile_size |
Tuple[int, int]
|
The tile size to use for SAHI. |
required |
overlap |
int
|
The overlap between tiles. |
required |
band_order |
List[int]
|
The band order. |
required |
resize_tf |
Callable[[Tensor], Tensor]
|
The resize transform to use for resizing the tiles. |
required |
input_transforms |
Callable[[Tensor], Tensor]
|
The input transform to use for input image before passing it to the model. |
required |
post_predict_transforms |
Callable[[Tensor], Tensor]
|
The post-predict transform to use for predictions. |
required |
fill_value |
float
|
The fill value for missing pixels. |
0.0
|
soft_labels |
bool
|
A flag indicating whether to use soft-labels. |
False
|
tta |
bool
|
A flag indicating whether to use TTA. |
False
|
tta_merge_mode |
str
|
The TTA merge mode. |
'mean'
|
decision_threshold |
Optional[float]
|
An optional decision threshold. |
None
|
Source code in kelp/nn/inference/sahi.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
kelp.nn.inference.sahi.process_image
Runs SAHI on a single image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_path |
Path
|
The path to the image. |
required |
model |
Module
|
The model to use for prediction. |
required |
tile_size |
Tuple[int, int]
|
The tile size to use for SAHI. |
required |
overlap |
int
|
The overlap between tiles. |
required |
band_order |
List[int]
|
The band order. |
required |
resize_tf |
Callable[[Tensor], Tensor]
|
The resize transform to use for resizing the tiles. |
required |
input_transforms |
Callable[[Tensor], Tensor]
|
The input transform to use for input image before passing it to the model. |
required |
post_predict_transforms |
Callable[[Tensor], Tensor]
|
The post-predict transform to use for predictions. |
required |
fill_value |
float
|
The fill value for missing pixels. |
0.0
|
soft_labels |
bool
|
A flag indicating whether to use soft-labels. |
False
|
tta |
bool
|
A flag indicating whether to use TTA. |
False
|
tta_merge_mode |
str
|
The TTA merge mode. |
'mean'
|
decision_threshold |
Optional[float]
|
An optional decision threshold. |
None
|
Source code in kelp/nn/inference/sahi.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
|
kelp.nn.inference.sahi.slice_image
Helper function to slice an image into smaller tiles with a given overlap.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
ndarray
|
The image to slice. |
required |
tile_size |
Tuple[int, int]
|
The size of the tile. |
required |
overlap |
int
|
The overlap between tiles. |
required |
Source code in kelp/nn/inference/sahi.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|