losses
The loss functions.
kelp.nn.models.losses.BatchSoftDice
Bases: Module
This is the variance of SoftDiceLoss, it in introduced in this paper
Source code in kelp/nn/models/losses.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
kelp.nn.models.losses.BatchSoftDice.forward
Calculates batch soft-dice loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_pred |
Tensor
|
Tensor shape (N, N_Class, H, W), torch.float |
required |
y_true |
Tensor
|
Tensor shape (N, H, W) |
required |
Source code in kelp/nn/models/losses.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
kelp.nn.models.losses.ComboLoss
Bases: Module
It is defined as a weighted sum of Dice loss and a modified cross entropy. It attempts to leverage the flexibility of Dice loss of class imbalance and at same time use cross-entropy for curve smoothing.
This loss will look like "batch bce-loss" when we consider all pixels flattened are predicted as correct or not
This loss is perfect loss when the training loss come to -0.5 (with the default config)
References
Paper. See the original paper at formula (3) Author's implementation in Keras
Source code in kelp/nn/models/losses.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
kelp.nn.models.losses.ExponentialLogarithmicLoss
Bases: Module
This loss is focuses on less accurately predicted structures using the combination of Dice Loss ans Cross Entropy Loss
Note
- Input for CrossEntropyLoss is the logits - Raw output from the model
Source code in kelp/nn/models/losses.py
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
|
kelp.nn.models.losses.FocalTverskyLoss
Bases: Module
Focal-Tversky Loss.
This loss is similar to Tversky Loss, but with a small adjustment With input shape (batch, n_classes, h, w) then TI has shape [batch, n_classes] In their paper TI_c is the tensor w.r.t to n_classes index
Source code in kelp/nn/models/losses.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
kelp.nn.models.losses.HausdorffLoss
Bases: Module
The Hausdorff loss.
Source code in kelp/nn/models/losses.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
kelp.nn.models.losses.LogCoshDiceLoss
Bases: Module
LogCoshDice Loss.
L_{lc-dce} = log(cosh(DiceLoss)
Source code in kelp/nn/models/losses.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
kelp.nn.models.losses.SoftDiceLoss
Bases: Module
SoftDice loss.
References
Paper related to this function:
Formula for binary segmentation case - A survey of loss functions for semantic segmentation
Source code in kelp/nn/models/losses.py
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
kelp.nn.models.losses.SoftDiceLoss.forward
Calculate SoftDice loss.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_pred |
Tensor
|
Tensor shape (N, N_Class, H, W), torch.float |
required |
y_true |
Tensor
|
Tensor shape (N, H, W) |
required |
Source code in kelp/nn/models/losses.py
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
kelp.nn.models.losses.TLoss
Bases: Module
Implementation of the TLoss.
Source code in kelp/nn/models/losses.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
kelp.nn.models.losses.XEDiceLoss
Bases: Module
Computes (0.5 * CrossEntropyLoss) + (0.5 * DiceLoss).
Source code in kelp/nn/models/losses.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|