train
The XGBoost training logic.
kelp.xgb.training.train.calculate_metrics
Calculates metrics for given model and its predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
XGBClassifier
|
The XGBClassifier model. |
required |
x |
DataFrame
|
The input dataframe. |
required |
y_true |
Series
|
The ground truth series. |
required |
y_pred |
ndarray
|
The prediction series. |
required |
prefix |
str
|
A prefix to use for metrics logging. |
required |
Source code in kelp/xgb/training/train.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
kelp.xgb.training.train.eval_model
Evaluates the XGBoost model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
XGBClassifier
|
The XGBoost model. |
required |
x |
DataFrame
|
The validation data. |
required |
y_true |
Series
|
The ground truth labels. |
required |
prefix |
str
|
The prefix for the metrics and plots. |
required |
seed |
int
|
The seed for reproducibility. |
SEED
|
explain_model |
bool
|
A flag indicating whether to run model feature importance calculation. |
False
|
Source code in kelp/xgb/training/train.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|
kelp.xgb.training.train.fit_model
Runs the training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
XGBClassifier
|
The model to be trained. |
required |
x |
DataFrame
|
The training dataset. |
required |
y_true |
Series
|
The training labels. |
required |
Source code in kelp/xgb/training/train.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
kelp.xgb.training.train.load_data
Loads the training data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The input dataframe with pixel-level values. |
required |
sample_size |
float
|
The random sample size to use for quicker training times. |
1.0
|
seed |
int
|
The seed for reproducibility. |
SEED
|
Source code in kelp/xgb/training/train.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
kelp.xgb.training.train.log_confusion_matrix
Logs confusion matrix to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Series
|
A pandas Series with ground truth values. |
required |
y_pred |
ndarray
|
A pandas array with prediction values. |
required |
prefix |
str
|
The prefix to use when logging confusion matrix. |
required |
normalize |
bool
|
A flag indicating whether to normalize the confusion matrix. |
False
|
Source code in kelp/xgb/training/train.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
kelp.xgb.training.train.log_model_feature_importance
Logs the feature importance to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
XGBClassifier
|
The XGBClassifier model. |
required |
feature_names |
ndarray
|
The names of the features. |
required |
Source code in kelp/xgb/training/train.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
kelp.xgb.training.train.log_permutation_feature_importance
Logs the permutation feature importance to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
XGBClassifier
|
The XGBClassifier model. |
required |
x |
DataFrame
|
The input data. |
required |
y_true |
Series
|
The ground truth data. |
required |
seed |
int
|
The seed to use for reproducibility. |
SEED
|
n_repeats |
int
|
The number of repeats. |
10
|
Source code in kelp/xgb/training/train.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
kelp.xgb.training.train.log_precision_recall_curve
Logs the precision and recall curve plot to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Series
|
The ground truth. |
required |
y_pred |
ndarray
|
The predicted values. |
required |
prefix |
str
|
The prefix to use when logging precision and recall curves. |
required |
Source code in kelp/xgb/training/train.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
|
kelp.xgb.training.train.log_roc_curve
Logs the ROC curve to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_true |
Series
|
The ground truth. |
required |
y_pred |
ndarray
|
The predicted values. |
required |
prefix |
str
|
The prefix to use when logging ROC curve plot. |
required |
Source code in kelp/xgb/training/train.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
kelp.xgb.training.train.log_sample_predictions
Logs sample predictions to MLFlow.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data_dir |
Path
|
The training data directory. |
required |
metadata |
DataFrame
|
The metadata dataframe. |
required |
model |
XGBClassifier
|
The XGBClassifier model. |
required |
spectral_indices |
List[str]
|
The spectral indices to append to the input image before prediction. |
required |
sample_size |
int
|
The number of samples to plot. |
10
|
seed |
int
|
The seed for reproducibility. |
SEED
|
Source code in kelp/xgb/training/train.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
kelp.xgb.training.train.main
Main entrypoint for training XGBClassifier.
Source code in kelp/xgb/training/train.py
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
|
kelp.xgb.training.train.min_max_normalize
Runs min-max quantile normalization on the input array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
ndarray
|
The input array. |
required |
Source code in kelp/xgb/training/train.py
319 320 321 322 323 324 325 326 327 328 329 330 331 |
|
kelp.xgb.training.train.run_training
Runs XGBoost model training.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
train_data_dir |
Path
|
The path to the training data. |
required |
dataset_fp |
Path
|
The path to the training dataset parquet file. |
required |
columns_to_load |
List[str]
|
The columns to load from the metadata dataset. |
required |
model |
XGBClassifier
|
The model to train. |
required |
spectral_indices |
List[str]
|
The spectral indices to append to the input records. |
required |
sample_size |
float
|
The fraction of samples to use for training. |
1.0
|
plot_n_samples |
int
|
The number of samples to plot. |
10
|
seed |
int
|
The seed for reproducibility. |
SEED
|
explain_model |
bool
|
A flag indicating whether to run model feature importance calculation. |
False
|
Source code in kelp/xgb/training/train.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|